Set declination/elevation. Move the dish to the highest point in its travel arc, i.e. centering the dish at its zenith. Do this by using the actuator; it can be done by visually looking at the dish. It is now time to set your declination/elevation angles. I use a common carpenter's inclinometer,to set angles. First set the elevation angle, it is measured on the polar axis (sometimes the elevation angle is called the polar axis angle). By elevation, it means the angle in degrees which the dish must be tilted up from the horizon prior to addition of the declination angle. Use az/el charts to get total elevation for your latitude location then substract the declination value for your latitude location and the remainder is the elevation angle to set in this step. (NOTE: The true dish pointing angle is the angle given by all az/el calculation programs and is in fact the sum of the zenith elevation angle (when the dish is at the top of the arc) plus the declination offset angle therefore substract the declination offset angle from the zenith az/el value to get the zenith elevation angle. This is not very critical at this point because you will adjust this angle for best reception later but be as accurate as possible. Next, set the off-set angle on the polar mount, this is the declination. This is an adjustment that tilts the dish 'forwards' at an angle depending on what latitude you live. This adjustment is usually measured on one of the mounts connected directly to the dish, i.e. in the plane of the dish but on its back ring, it depends on your type mount. (In practice, use az/el charts to get total zenith elevation angle, i.e. from the ground to the dish face, for your latitude location and this will be the value to set in the declination adjustment.). Set magnetic deviation. Align the polar axis to the true north-south line for your site (don't forget to adjust for magnetic deviation and to apply the deviation to the correct 'side' of the north needle on the compass) and check that the satellite dish mount cap is vertical on all sides after you tighten it. Tighten the dish on the mount, then loosen it just enough so it will turn. Sometimes, though, the weight of the front of the dish will typically cause it to drop a little so that the mount cap will not be plumb - this is especially true if the pole diameter is in centimeters and the polar cap is in inches; when this happens, Jam a screwdriver between the pole and cap until the cap is plumb then tighten the cap bolts. NOTE: Sometimes the act of tightening mount cap bolts will cause the dish/mount to rotate slightly so after tightening mount cap bolts check that the dish is still aligned to the true north-south line.In case you haven't used a compass in a while, remember it's a circle, 360 degrees. Zero is North, East is 90, South is 180 and West is 270. Put the needle on North and pick something in the distance that is in line with North. Make sure the needle moves freely as you turn the compass around and that it is not too close to the dish or anything metal. It may help you to tie a string to the mount and walk out away from the dish. Line your compass with the string and have someone hold it, or tie it to something such as a rod in the ground. When you are behind the dish, this will give you a reference to work with. Remember, the dish will look south if you are in the northern hemisphere and will look north if you are in the southern hemisphere and will look straight up if you are on the equator Align azimuth for azel mount satellite. If you are using an azel mount, i.e. not a polar tracking mount, then you will align the azimuth setting to the true heading (not the magnetic heading) of the satellite you are seeking and proceed to azel elevation setting. Program first satellites. Move your television and satellite receiver to a table near the dish, if possible; it will save time from running in the house to look at the image then go outside to make dish adjustments. Begin with a satellite that is located as close as possible to due south of your location (if in the northern hemisphere and otherwise locate a satellite due north if you are in the southern hemisphere), this is the highest point of the arc and it is easiest to accurately adjust the polar axis angle (elevation angle) from this position. (A few degrees off will not make much difference because the dish moves almost flat in the center of arc.) It is usually best to look for a C-band satellite when you begin (if you are working with a C/Ku system), they will be easier to find than a Ku satellite; however, try a Ku satellite because the accuracy your system will have will be much greater if you tune to Ku satellites although Ku satellites are more difficult to find initially - if you have a Ku system only, of course, look for the nearest Ku satellite due south of your installation. The quickest way to track a dish, though, is to program all the C-band satellites first then put in the Ku satellites. If the elevation setting is way off or if the magnetic adjustment is way off, you might not find this first satellite. If so, while having the dish located at the highest point of the arc (due south), you have to turn the entire polar mount on the ground pole until you 'hit' the satellite. If your first satellite is not at the top of the arc, or near to it, continue with this procedure until you locate the top of the arc satellite; always program all satellites you find into the receiver, as you find them, and do not forget to use the skew adjustment to fine tune polarity. When you find a satellite, take the receiver off scan mode and check with a current copy of your local satellite TV guide to confirm which satellite you have found. Remember to adjust the polarity to its best at each satellite and program into receiver. Program azimuth-elevation satellite. If you are using an azel mount, i.e. not a polar tracking mount, then you will have aligned the azimuth setting to the true heading (not the magnetic heading) of the satellite you are seeking and in this step you will raise (lower) the elevation setting to the elevation of the satellite you are seeking and you will be finished with your installation except for fine tuning the two settings. Fine tune north-south alignment (tracking the sides of the arc). After you are satisfied with the elevation and declination adjustment at the top of the arc, it is time to program middle and end of the arc satellites. This is where most people fail. DO NOT adjust any elevation angles on the mount at this point! Choose the side where the satellites are lowest on the horizon and move the dish, using the actuator, to each consecutive satellite from the top of the arc to the lowest one you can find. Peak the dish on the satellite, the lowest on the arc you can locate, using the actuator. Next, push or pull upwards and downwards on the dish (remember not to stand in front of the signal so as to block incoming signal). You don't have to use much force, just a bit to see if the signal gets better or worse when you push/pull on the dish. What you are actually doing is changing the elevation angle a bit. For instance, if the dish is pointing at a satellite to the east of center and you have to push up on the dish to get a better signal, then the elevation angle must be adjusted higher. At this time, you adjust this by turning the entire mount to the east (to the west if you are in the southern hemisphere) and not by adjusting either the elevation or declination angles! Most errors in tuning a satellite system are due to improper north/south alignment. To repeat, if the dish needs to be pulled down (lowered) for a better signal, then turn the mount the opposite direction (towards the higher point on the arc) and if the dish needs to be pushed up (lifted) to get a better signal, then rotate the entire mount away from the top of the arc. BE SURE TO MARK, using a piece of chalk or place a strip of masking tape on the pole and mount cap, the pole and mount to know exactly where your original position is - rotate the mount only SLIGHTLY (no more than 1/16inch ). Note from the chart, a very small movement on the pole can translate to a very large amount in degrees of rotation. Best method to rotate the dish is to barely loosen the cap bolts then stand in front of the dish and grasp the lip of the dish with both hands and gently move the dish in the desired direction. Then retighten the cap bolts, checking that mount cap is still plumb, and mark the new cap position on the pole. After moving the mount, use the actuator and move the dish east/west as necessary to peak the signal on each satellite encountered. Observe the results on a satellite at each end of the arc and at the top of the arc after each mount adjustment. Repeat this procedure until the dish has the correct north/south alignment, as you do this you should be able to locate the satellite lowest on the arc if you could not find it at first. Always go back to the top of the arc to make sure it is still in view and always check the satellites on the low ends of the arc. If you peaked the dish for center, and then for one side, and the center is still in view then the other side should be very close, of course, this will depend on the ground pole being vertical and offset angle/elevation angle settings.Remember, when you rotate the mount on the pole, each satellite will need to be reprogrammed into the receiver as rotating around the pole changes the location of the satellite in respect to the memory of actuator setting (per satellite) internal to the receiver. If, when the end of the arc satellite is in view and the top of the arc satellite is not in view, then the elevation angle adjustment is grossly wrong and you have to readjust the elevation angle and repeat the procedure until you get one side of the arc, including the top, all in view and programmed into the receiver. If you suspect your elevation adjustment is grossly wrong, go back to the first satellite, the one at the top of the arc, and adjust the elevation so that the satellite remains in view when the mount is set back to its true north-south axis then repeat procedures of this step. Ideally, what you want in this step is to be able to see the entire arc (even if the dish is not hitting center on either ends or the top); what you are looking for at this time is a compromise on the north/south setting that allows all satellites, from end to end, to be in view. After this compromise is reached then it is time to fine tune elevation/declination settings. Always, as you move the dish from side to side, stop at a couple of satellites in the middle and at the top to monitor your adjustment effects. Fine tune elevation. Once again, lift and pull the dish on the satellites on the low ends of the arc to see which direction produces a better picture (stronger signal). As stated in previous step, lifting and lowering the dish has the momentary effect of making elevation changes to the mount - if you are using a spectrum analyzer to tune the dish then you will be able to visibly see if the signals are weaker or stronger as you lift and lower the dish otherwise watch the image on the TV screen and/or the strength meter on the receiver. If lifting the dish on both sides produces a better signal, including the center satellite (or at least does not affect the center) then slightly increase the elevation angle. If lowering the dish on both sides produces a better signal, including the center satellite (or least does not affect the center) then slightly reduce the elevation angle. Keep track how much you turn the bolt(s) that adjust the elevation angle so in case you overadjust you know how much to 'back up' the adjustment. A rule of thumb is to only move the elevation adjustment bolts no more than a quarter of a turn per adjustment. After each adjustment quickly check all satellites to see if they are better or worse. You might have to go from side to side and repeat the elevation adjustment steps before the dish tracks to your satisfaction. Fine tune declination (end of the arc adjustments). If, and ONLY if, you can not get both sides to peak, and both sides would be too low or too high while the center remains the same; you can then do a small adjustment of the declination angle to get the two sides into peak with the top. BUT, only do this if you can confirm that both sides are low or high while the center remains the same. If the dish is too high on the sides (arc ends), but fine in the center, the declination angle is too low so increase the declination and decrease the elevation angle the same amount. The two adjustments will cancel each other in the center of the arc while tracking lower on the sides. Conversely, if the dish is too low on the sides (arc ends), but fine in the center, the declination angle is too high so decrease the declination and increase the elevation angle the same amount. One thing to remember, the satellite dish also receives random noise, earth thermal noise, from the earth in addition to signals from space. Random earth noise is something we can not control and is generated by internal molecular motion of all matter; therefore, when the dish is at its peak, it is receiving less thermal noise than when it is positioned looking out on the horizon. Therefore, lower end satellites will always show a weaker signal than higher arc satellites - all things being equal. If your satellites of interest are on the low end of the arc and those satellites are delivering weaker signals to your system after your best efforts at tuning the dish, then you will require a larger diameter dish though installing the best rated LNB you can afford might overcome this. Note, a larger diameter dish will take in more thermal noise, of course, but the increased satellite signals it will gather are more significant than the increased thermal noise it will pick up. The side lobes of a larger dish are smaller in comparison to its main lobe so a larger dish receives less per cent noise per signal as compared to a smaller dish and, as the chart indicates, consequently shows to receive less noise than a smaller dish. so that a larger diameter satellite dish is the clue to overcoming weak signals from low end of the arc satellites. SUMMARY: Find top satellite first then satellite at lowest arc position then program satellites in the middle between these two then program your way down to the lowest satellite at the other end of the arc. Always adjust north-south axis before making elevation/declination adjustments. Always adjust elevation before making any declination adjustments. To determine whether to make elevation or declination adjustment, program as many satellites as possible into satellite receiver then use this chart to analytically see which adjustment is appropriate.(The best manner to understand this is to understand that the satellite arc makes a half circle and that the tracking movement of mount of dish makes another half circle and when these two half circles are aligned then dish is properly tracked.)If at any time a satellite signal quality can be improved by manually lifting or lowering the dish then your adjustments are not complete. A perfectly tracked C-band arc can appear to be 'all over the place' when you go to program the Ku satellites - do not be shocked. So repeat fine tuning steps on the Ku arc but stay away from further north/south adjustments in Ku fine tuning unless you are really convinced it will be beneficial or you can really get 'mucked up'!! Be sure, on Ku, that you are not chasing weak or half transponder channels and that your dish size relative to site location relative to transmitted footprint is conducive for high quality reception from the questionable weak signal, i.e. check the footprint of that transponder to see if it is being transmitted to your region. Ku signal strength can vary greatly from transponder to transponder within a satellite - especially on hybrid C/Ku satellites. On Ku, national news feeds are usually strong throughout the coverage region; regional feeds may be on a spot beam; local news feeds may be uplinked weakly and dependent on a very large dish at the home station to bring in a quality picture; private educational classes are often half transponder transmissions and depend on a very large dish at the receive site to bring in a quality picture. For dedicated Ku satellites the energy level of the transponders is more even and your major problems will be one of spot beams - you may be under a strong regional coverage yet be marginal in a spot coverage.If you really want to 'play' with your system further (and your wife does not mind), position and leave the dish on the satellite with weak channels and experiment with moving the focal point (the feed) in and out slightly then with moving the setting of the F/D ratio slightly. Remember that warped dishes (antenna symmetry), missing panels, hail damaged panels and loose bolts in the mount (especially check the bolt that connects the pivot axis tube to the mount cap) will deter top performance from your system - and Ku reception is the most sensitive to incorrect focal length and F/D settings.When you are satisfied with your efforts, recheck that all bolts are completely tight and definitely tighten the mount cap to axis tube bolt. Also, make a definitive mark on the pole/mount cap for the correct alignment just in case extremely high winds should cause the dish to rotate slightly on the pole. In high winds, position the dish at the top of the arc at which point is the least resistance to wind forces; aiming the dish into the wind will put the most strain on your installation.